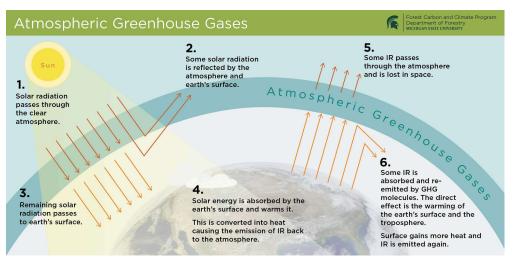
Science Background: Carbon Cycle and Storage

Why Carbon?


- CO₂ is a highly consequential human-made greenhouse gas and closely linked to climate change
- In 2017, CO₂ accounted for ~76% of total global GHG emissions
 - o Fossil fuel use
 - Deforestation
- Forests present a uniquely effective opportunity to sequester and store carbon through natural processes of photosynthesis and forest ecosystem cycling

CO₂ Share of Global GHG emissions (2017)

76%

Greenhouse Effect

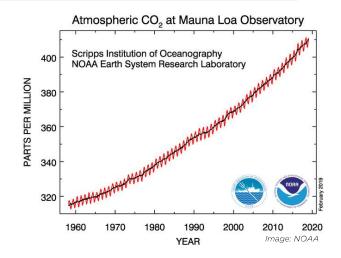
- **Greenhouse Effect**: warming that results when the atmosphere traps heat radiating from Earth towards space
- Under stable conditions, energy entering and exiting Earth's system will be balanced and the Earth will maintain a constant average temperature
- Current measurements indicate the Earth absorbs 0.85 watts/m² over reflections back to space due to an an excess of anthropogenic greenhouse gas concentration

Data source: Okanangan University College in Canada, US EPA, UNEP Image Adapted by MSU FCCP

Global Warming Potential (GWP)

- GWP: the amount of heat a particular greenhouse gas can trap in the atmosphere
- Calculated from three factors:
 - Absorption of infrared radiation by the gas

Gas Compound	20 -year GWP	100-year GW P
Carbon Dioxide (CO ₂)	1	1
Methane (CH₄)	84	28
Nitrous Oxide (N₂O)	264	265
HFC-134a	3710	1300
CFC-11	6900	4660
Carbon tetrafluoride (CF ₄)	4880	6630


- 2. Wavelengths of its absorption peaks
- 3. Residence time of gas in the atmosphere
- Calculated in reference to CO₂
 - GWP of CO₂ is 1
 - $_{\odot}$ Example: CH₄ has a GWP of 28 over a 100-year period, meaning 1 ton of CH₄ released into the atmosphere will trap as much heat as 28 tons of CO₂ over 100 years.

Comparing GHGs - CO2e

- CO_2e : carbon dioxide equivalent, the amount of CO_2 equivalent to the same global warming impact of a specific greenhouse gas
- CO₂e = GHG x GWP
 - \circ Example: CH₄ is 28x the GWP of CO₂, so 1kg CH₄ = 25 kg CO₂e

Recent Trends in Atmospheric CO₂ Concentrations

- Keeling Curve, Mauna Loa Observatory
 - Red curve = CO₂ data measured
 - Black curve = seasonally corrected data
- Increase in yearly average of CO₂ concentrations over past 60 years

Long-term Trends in Atmospheric CO₂ Concentrations

- Long-term variability of CO₂ in atmosphere
- 400,000 to 100 years ago, CO₂ concentration never exceeded 300ppm
- Today, CO₂ concentration exceeds 400ppm and continues to increase annually

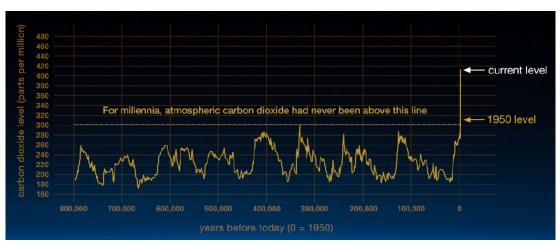


Image: NASA